Skip to content ↓

Topic

Research Laboratory of Electronics

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 153 news clips related to this topic.
Show:

The Guardian

In a letter to The Guardian, Research Scientist Florian Metzler, Research Affiliate Matt Lilley and their colleagues highlight the important advancements being made in cold fusion research. “Cold fusion could result in spectacular technologies. But we are convinced that the way forward requires rigorous, open-source scientific investigation, not more claims,” they write. “In many ways, cold fusion’s time has come. Advances in theory and experiment have made the LENR field eminently actionable.” 

Noticias Telemundo

In this interview (in Spanish), graduate students Suhan Kim and Yi-Hsuan (Nemo) Hsiao speak with Telemundo correspondent Miriam Arias about their work developing insect-sized robots to assist with agricultural needs. “There might be one year where you have a lot of bees in the field that help you pollinate everything. Maybe the next year, it might be affected by the temperature or something [and] you just don’t have enough bees to help you do so,” explains Hsiao. 

Tech Briefs

Graduate students Suhan Kim and Yi-Hsuan (Nemo) Hsiao speak with Tech Briefs reporter Andrew Corselli about their work developing insect-sized robots capable of artificial pollination. “Typical drones use electromagnetic motors plus propellers. But, our system is a little different in that we are primarily using an artificial muscle,” explains Kim. 

Reuters

Researchers from MIT and elsewhere have develop insect-sized robots that could one day be used to help with farming practices like artificial pollination, reports Alice Rizzo for Reuters. "These type of robots will open up a very new type of use case," says graduate student Suhan Kim. "We can start thinking of using our robot, if it works well, for tools like indoor farming."

New Scientist

Researchers at MIT have developed an insect-like, flying robot capable of performing acrobatic maneuvers and hovering in the air for up to 15 minutes without failing, reports Alex Wilkins for New Scientist. “By having a hugely increased [flying] lifetime, we were able to work on the controller parts so that the robot can achieve precise trajectory tracking, plus aggressive maneuvers like somersaults,” says graduate student Suhan Kim. 

Quanta Magazine

Quanta Magazine reporter Charlie Wood spotlights how MIT researchers have contributed to the recent discoveries of new superconductive materials. Prof. Long Ju and his research team “placed a five-layer graphene flake on an insulator at a twisted angle and observed a rare electron behavior that normally requires a strong magnetic field to induce,” explains Wood. 

Ars Technica

Ars Technica reporter Jacek Krywko spotlights how MIT researchers have developed a new photonic chip that that can “compute the entire deep neural net, including both linear and non-linear operations, using photons.” Visiting scientist Saumil Bandyopadhyay '17, MEng '18, PhD '23 explains that: “We’re focused on a very specific metric here, which is latency. We aim for applications where what matters the most is how fast you can produce a solution. That’s why we are interested in systems where we’re able to do all the computations optically.” 

Tech Briefs

MIT researchers have developed a security protocol that utilizes quantum properties to ensure the security of data in cloud servers, reports Andrew Corselli for Tech Briefs. “Our protocol uses the quantum properties of light to secure the communication between a client (who owns confidential data) and a server (that holds a confidential deep learning model),” explains postdoc Sri Krishna Vadlamani. 

Interesting Engineering

MIT scientists have “observed and captured images of a rare ‘edge state’ in ultracold atoms,” reports Rupendra Brahambhatt for Interesting Engineering. “Using these findings, they can learn to achieve and harness the edge states of electrons in different materials,” notes Brahambhatt. “This breakthrough in the field of quantum physics could lead to the discovery of practically infinite energy sources.”

Scientific American

Researchers at MIT have created a noise-blocking sheet of silkworm silk that could “greatly streamline the pursuit of silence,” reports Andrew Chapman for Scientific American. “The silk sheet, which is enhanced with a special fiber, expands on a technology also found in noise-canceling headphones,” explains Chapman. “These devices create silence by sampling the ambient noise and then emitting sound waves that are out of phase with those in the environment. When the ambient and emitted waves overlap, they cancel each other out.” 

MassLive

Researchers at MIT have developed a fiber capable of suppressing sound that is made up of “silk, canvas and other common materials,” reports Charlie McKenna for MassLive. “The silk is barely thicker than human hair and is made by heating the materials and drawing them into a fiber,” explains McKenna. “Since each material flows at the same temperature, they can be pulled into a fiber while maintaining their structure.” 

Popular Mechanics

MIT physicists have “successfully placed two dysprosium atoms only 50 nanometers apart—10 times closer than previous studies—using ‘optical tweezers,’” reports Darren Orf for Popular Mechanics. Utilizing this technique can allow scientists to “better understand quantum phenomena such as superconductivity and superradiance,” explains Orf. 

CBC News

MIT researchers have developed “an ultra-thin silk fabric embedded with a special piezoelectric fiber that can vibrate to cancel out noise in a room,” reports Bob McDonald for CBC. “The researchers want to further study how changing elements of the fabric — such as the number of piezoelectric fibers and the voltage they apply to it, the direction they're sewn into the fabric, and the size of the pores in the fabric — can improve on their findings,” writes McDonald. 

Interesting Engineering

Interesting Engineering reporter Sujita Sinha spotlights how MIT researchers crafted a special silk fabric capable of blocking sound. “Inside this special material is a fiber that springs to life when an electrical charge is applied,” explains Sinha. “The fabric starts shaking when it hears sound, which helps stop noise in two different ways.”

The Boston Globe

A more than $40 million investment to add advanced nano-fabrication equipment and capabilities to MIT.nano will significantly expand the center’s nanofabrication capabilities, reports Jon Chesto for The Boston Globe. The new equipment, which will also be available to scientists outside MIT, will allow “startups and students access to wafer-making equipment used by larger companies. These tools will allow its researchers to make prototypes of an array of microelectronic devices.”