Skip to content ↓

Topic

Kavli Institute

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 300 news clips related to this topic.
Show:

CNN

MIT astronomers have analyzed the scintillation – or glistening - produced by a fast radio burst (FRB) to help identify the location of the pulses, reports Ashley Strickland for CNN. “We discovered that this FRB exhibits ‘twinkling,’ similar to how stars appear to twinkle in the night sky,” explains postdoc Kenzie Nimmo. “Observing this scintillation indicates that the region where the FRB originated must be incredibly small.”

USA Today

USA Today reporter Eric Lagatta writes that a new study by MIT researchers fins that X-ray flashes emanating from a supermassive black hole located 270 million light-years from the Milky Way could be caused by a dead stellar remnant, or white dwarf. The researchers believe that the white dwarf could be “spinning precariously on the edge of the black hole, causing the explosions of high-energy light.” 

Reuters

MIT astronomers have detected X-ray flashes erupting from a supermassive black hole that seem to be caused by a nearby white dwarf, reports Will Dunham for Reuters. “It is probably the closest object we've ever observed orbiting around a supermassive black hole,” says graduate student Megan Masterson. “This is extremely close to the black hole's event horizon.”

Mashable

MIT astronomers have witnessed flashes of X-rays shooting out of a black hole and believe that a dead star, or white dwarf, passing close by the black hole could be causing the eruptions, reports Mark Kaufman for Mashable. “The astronomers ran simulations of what could drive these unusual bursts of energy,” writes Kaufman. “The most plausible outcome is this brazen white dwarf (the spent core of a sun-like star), which is about one-tenth the mass of our sun. It's shedding its dense, outer layer and triggering these pulses of X-rays.” 

Space.com

Space.com reporter Robert Lea writes that using the XMM-Newton X-ray telescope, MIT astronomers have observed bursts of X-rays erupting with increasing frequency from a supermassive black hole, a behavior they think could be caused by a “dead stellar core, or white dwarf, daringly teetering on the edge of the black hole.” Lea explains that “if the source of these strange episodes is a finely balanced white dwarf, the researchers theorize that it could be detected using ripples in space and time called gravitational waves emitted from the system.”

New York Times

Researchers at MIT and elsewhere have discovered a “black-hole triple, the first known instance of a three-body system that includes a black hole, which is not supposed to be part of the mix,” reports Dennis Overbye for The New York Times.  The researchers propose that the black hole “could have resulted from a sort of immaculate conception whereby the progenitor star disappeared from the universe without any fireworks.”

Reuters

Astronomers from MIT and elsewhere have “identified a black hole that appears to have come into being through the collapse of the core of a large star in its death throes, but without the usual blast,” explains Will Dunham for Reuters. “Black holes have previously been spotted orbiting with one other star or one other black hole in what are called binary systems,” explains Dunham. “But this is the first known instance of a triple system with a black hole and two stars.”

Newsweek

Researchers from MIT and elsewhere have discovered a black hole triple – a black hole with two orbiting stars around it at varying distances – for the first time, reports Jess Thomson for Newsweek. The researchers believe this “first-of-its-kind discovery could help unravel the mysteries of how black holes form and how they enter into binaries or triples,” writes Thomson. 

Popular Science

Popular Science reporter Laura Baisas writes that MIT physicists have discovered, for the first time, a black hole triple. “Since the new triple system includes a very far-off star, the system’s black hole was potentially born through [a] gentler direct collapse,” writes Baisas. “While astronomers have been observing violent supernovae for centuries, this new triple system may be the first evidence of a black hole that formed from this more gentle process.” 

Gizmodo

Physicists from MIT and Caltech have discovered a black hole triple system, “consisting of three bodies spinning around each other about 7,800 light-years from Earth,” writes Isaac Schultz for Gizmodo. Schultz notes that the finding “pushes the envelope,” revealing “a system with one black hole and two stars—a configuration never seen before.”

The Boston Globe

Boston Globe reporter Nick Stoico spotlights how researchers from MIT and Caltech have observed a “black hole triple” for the first time. “This one is satisfying because it’s kind of a simple discovery,” explains postdoctoral associate Kevin Burdge. “It’s just looking at a picture, and I think it reminds a lot of astronomers that there’s more to the job than just analyzing complicated data. You shouldn’t forget to do the simple things, like just look with your own eyes at some pictures and see what you find.” 

Mashable

Using the James Webb Telescope, researchers at MIT have found quasars, “some of the brightest objects in the cosmos, adrift in the empty voids of space,” reports Mark Kaufman for Mashable. “This latest cosmic quandary is not just about how these quasars formed in isolation, but how they formed so rapidly,” explains Kaufman. 

Gizmodo

Researchers at MIT and elsewhere have found a connection between “the bursts and tidal disruptions events” of black holes, research that could help "astrophysicists understand the extreme environments around supermassive black holes, as well as the occupants of those environments,” reports Isaac Schultz for Gizmodo. “There had been feverish speculation that these phenomena were connected, and now we’ve discovered the proof that they are,” says Research Scientist Dheeraj Pasham. “It’s like getting a cosmic two-for-one in terms of solving mysteries.” 

CNN

CNN’s Ashley Strickland reports on the discovery of an exoplanet on the path to becoming a “hot Jupiter,” providing clues about the evolution of these massive Jupiter-like planets closely orbiting their host stars. As Prof. Sarah Millholland explains: “This system highlights how incredibly diverse exoplanets can be. They are mysterious other worlds that can have wild orbits that tell a story of how they got that way and where they’re going.”

Forbes

Prof. Sara Seager, Prof. Robert Langer and Prof. Nancy Kanwisher have been awarded the 2024 Kavli Prize for their work in the three award categories: astrophysics, nanoscience, and neuroscience, respectively, reports Michael T. Nietzel for Forbes. According to the Norwegian Academy of Science and Letters, this award honors scientists with outstanding research “that has broadened our understanding of the big, the small and the complex,” writes Nietzel.