Skip to content ↓

Topic

Bioinspiration

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 49 news clips related to this topic.
Show:

New York Post

MIT researchers have developed a technique to use a damage suppressing protein called “Dsup” to help protect cancer patients from the side effects of radiation therapy, writes Shane Galvin for The New York Post. “Scientists, encouraged by this remarkable discovery, believe they can create an upgraded version of Dsup which can be used to radiation-proof human cells without any unwanted drawbacks,” writes Galvin. “They also believe that the protein could be used by astronauts to prevent space-related radiation [damage].” 

Gizmodo

Researchers at MIT and elsewhere have found that a protein developed by tardigrades could be used to help protect cancer patients from the side effects of radiation therapy, reports Ed Cara for Gizmodo. “The findings could someday lead to an invaluable add-on treatment for many cancer patients,” writes Cara. He adds that the new technique “could even possibly be used to protect astronauts from space-related radiation or to protect cancer patients from other sources of treatment-induced DNA damage, such as chemotherapy drugs.”

Genetic Engineering & Biotechnology News

According to a new study co-authored by researchers at MIT, harnessing the damage suppressor protein found in tardigrades, a microscopic organism known for its resilience, could help ease the impacts of radiation therapy on cancer patients. “The Dsup protein, which binds directly to DNA and reduces radiation-induced strand breaks, immediately struck us as a promising tool to mitigate normal tissue injury during radiotherapy,” Prof. Giovanni Traverso explains to Corinna Singleman of Genetic Engineering & Biotechnology News

Noticias Telemundo

In this interview (in Spanish), graduate students Suhan Kim and Yi-Hsuan (Nemo) Hsiao speak with Telemundo correspondent Miriam Arias about their work developing insect-sized robots to assist with agricultural needs. “There might be one year where you have a lot of bees in the field that help you pollinate everything. Maybe the next year, it might be affected by the temperature or something [and] you just don’t have enough bees to help you do so,” explains Hsiao. 

Tech Briefs

Graduate students Suhan Kim and Yi-Hsuan (Nemo) Hsiao speak with Tech Briefs reporter Andrew Corselli about their work developing insect-sized robots capable of artificial pollination. “Typical drones use electromagnetic motors plus propellers. But, our system is a little different in that we are primarily using an artificial muscle,” explains Kim. 

Reuters

Researchers from MIT and elsewhere have develop insect-sized robots that could one day be used to help with farming practices like artificial pollination, reports Alice Rizzo for Reuters. "These type of robots will open up a very new type of use case," says graduate student Suhan Kim. "We can start thinking of using our robot, if it works well, for tools like indoor farming."

Nature

Prof. Giovanni Traverso speaks with the Nature Podcast hosts Benjamin Thompson and Emily Bates about his work developing an ingestible capsule capable of delivering drugs directly into lining of the GI tract. “Part of the work that we did was really defining how much force needs to be applied so that that jet can go through the tissue,” says Traverso. “But not only go through the initial part of the tissue, what we wanted to understand for each part of the GI tract was exactly how much pressure is required to essentially deposit some amount of drug under the surface of the tissue.” 

New Scientist

Researchers at MIT have developed an insect-like, flying robot capable of performing acrobatic maneuvers and hovering in the air for up to 15 minutes without failing, reports Alex Wilkins for New Scientist. “By having a hugely increased [flying] lifetime, we were able to work on the controller parts so that the robot can achieve precise trajectory tracking, plus aggressive maneuvers like somersaults,” says graduate student Suhan Kim. 

Genetic Engineering & Biotechnology News

Using cephalopods, like squid, as inspiration, researchers from MIT, Brigham and Women’s Hospital and Novo Nordisk have developed a capsule that can deliver drugs directly into the digestive track without using needles, writes Corinna Singleman for Genetic Engineering & Biotechnology News. “The capsule design is highly adaptable and was intentionally developed to handle a wide range of drug types,” said Prof. Giovanni Traverso. 

The Economist

The Economist covers new work by Prof. Giovanni Traverso and his colleagues at Brigham and Women’s Hospital and Novo Nordisk, who have developed an ingestible capsule that can “get medication into patients without having to jab them at all, by copying the jet-propulsion techniques used by squid and their kin.” 

STAT

Prof. Giovanni Traverso and his colleagues have developed a new device, inspired by sea creatures, that can deliver drugs orally by using jets to “eject drugs into the tissue lining the digestive tract," reports Anil Oza for STAT. “We want to make it easier for patients to receive medication,” says Traverso. “The challenge with drugs like insulin and monoclonal antibodies is that they require an injection. That in and of itself can be a barrier for receiving that medication.” 

Forbes

A new study by MIT scientists uncovers how male sandgrouse are able to soak up large amounts of water in their feathers and carry it over long distances to their chicks, reports Forbes. The researchers found that “when wetted, the coiled portions of the sandgrouse feather barbules unwind and rotate so they end up perpendicular to the vane. This creates a dense forest of fibers that can hold water through capillary action.”

Popular Science

MIT engineers have developed a new technique that enables bug-sized aerial robots to handle a sizeable amount of damage and still fly, reports Andrew Paul for Popular Science. “The new repair techniques could come in handy when using flying robots for search-and-rescue missions in difficult environments like dense forests or collapsed buildings,” writes Paul.

Mashable

Postdoc Zach Patterson speaks with Mashable about how he and his colleagues are developing a soft robot inspired by a sea turtle that could potentially "offer a closer look at ocean life and assist in further studying aquatic creatures.” Patterson explains that the robotic turtle is meant to be a “platform for exploring the interaction between soft and rigid materials incorporated into a robotic structure.”

Mashable

Researchers at MIT developed SoFi, a soft robotic fish designed to study underwater organisms and their environments, reports Mashable. “The soft robotic fish serves a nice purpose for hopefully minimizing impact on the environments that we’re studying and also helps us study different types of behaviors and also study the actual mechanics of these organisms as well,” says graduate student Levi Cai.